String Algorithms

Jaehyun Park

CS 97SI Stanford University

June 30, 2015

Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

String Matching Problem

String Matching Problem

- Given a text T and a pattern P, find all occurrences of P within T
- Notations:
 - n and m: lengths of P and T
 - Σ : set of alphabets (of constant size)
 - P_i : *i*th letter of P (1-indexed)
 - a, b, c: single letters in Σ
 - x, y, z: strings

String Matching Problem

Example

- T = AGCATGCTGCAGTCATGCTTAGGCTA
- ▶ P = GCT
- P appears three times in T
- A naive method takes O(mn) time
 - Initiate string comparison at every starting point
 - Each comparison takes ${\cal O}(m)$ time
- We can do much better!

Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Hash Function

- A function that takes a string and outputs a number
- A good hash function has few collisions

– i.e., If $x \neq y$, $H(x) \neq H(y)$ with high probability

- An easy and powerful hash function is a polynomial mod some prime p
 - Consider each letter as a number (ASCII value is fine)
 - $H(x_1 \dots x_k) = x_1 a^{k-1} + x_2 a^{k-2} + \dots + x_{k-1} a + x_k \pmod{p}$
 - How do we find $H(x_2 \dots x_{k+1})$ from $H(x_1 \dots x_k)$?

Hash Table

Hash Table

- ▶ Main idea: preprocess *T* to speedup queries
 - Hash every substring of length k
 - k is a small constant

- ► For each query *P*, hash the first *k* letters of *P* to retrieve all the occurrences of it within *T*
- Don't forget to check collisions!

Hash Table

Pros:

- Easy to implement
- Significant speedup in practice

Cons:

- Doesn't help the asymptotic efficiency
 - \blacktriangleright Can still take $\Theta(nm)$ time if hashing is terrible or data is difficult
- A lot of memory consumption

Hash Table

Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Knuth-Morris-Pratt (KMP) Matcher

- ► A linear time (!) algorithm that solves the string matching problem by preprocessing P in Θ(m) time
 - Main idea is to skip some comparisons by using the previous comparison result
- Uses an auxiliary array π that is defined as the following:
 - $\pi[i]$ is the largest integer smaller than i such that $P_1 \dots P_{\pi[i]}$ is a suffix of $P_1 \dots P_i$
- It's better to see an example than the definition

π Table Example (from CLRS)

i	1	2	3	4	5	6	7	8	9	10
Pi	a	b	а	b	а	b	а	b	С	а
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

▶ $\pi[i]$ is the largest integer smaller than i such that $P_1 \dots P_{\pi[i]}$ is a suffix of $P_1 \dots P_i$

- e.g., $\pi[6]=4$ since abab is a suffix of ababab
- $\textit{e.g.},\,\pi[9]=0$ since no prefix of length ≤ 8 ends with c

Let's see why this is useful

- ▶ T = ABC ABCDAB ABCDABCDABDE
- ▶ P = ABCDABD
- $\pi = (0, 0, 0, 0, 1, 2, 0)$
- ► Start matching at the first position of *T*:

12345678901234567890123 **ABC ABCDAB ABCDABCDABDE ABCDABD** 1234567

Mismatch at the 4th letter of P!

- We matched k = 3 letters so far, and $\pi[k] = 0$
 - Thus, there is no point in starting the comparison at T_2 , T_3 (crucial observation)
- Shift P by $k \pi[k] = 3$ letters

12345678901234567890123 **ABC ABCDAB ABCDABCDABDE ABCDABD** 1234567

▶ Mismatch at T₄ again!

- We matched k = 0 letters so far
- Shift P by $k \pi[k] = 1$ letter (we define $\pi[0] = -1$)

12345678901234567890123 **ABC ABCDAB ABCDABCDABDE ABCDABD** 1234567

▶ Mismatch at *T*₁₁!

- $\pi[6] = 2$ means P_1P_2 is a suffix of $P_1 \dots P_6$
- Shift P by $6 \pi[6] = 4$ letters

12345678901234567890123 **ABC ABCDAB ABCDABCDABDE ABCDABD I I ABCDABD** 1234567

▶ Again, no point in shifting P by 1, 2, or 3 letters

▶ Mismatch at *T*₁₁ again!

12345678901234567890123 **ABC ABCDAB ABCDABCDABDE ABCDABD** 1234567

- Currently 2 letters are matched
- Shift P by $2 \pi[2] = 2$ letters

▶ Mismatch at *T*₁₁ yet again!

12345678901234567890123 **ABC ABCDAB ABCDABCDABDE ABCDABD** 1234567

- Currently no letters are matched
- Shift P by $0 \pi[0] = 1$ letter

Mismatch at T₁₈

12345678901234567890123 **ABC ABCDAB ABCDABCDABDE ABCDABD** 1234567

- Currently 6 letters are matched
- Shift P by $6 \pi[6] = 4$ letters

► Finally, there it is!

12345678901234567890123

ABC ABCDAB ABCDABCDABDE ABCDABD 1234567

- Currently all 7 letters are matched
- ► After recording this match (at T₁₆...T₂₂, we shift P again in order to find other matches
 - Shift by $7 \pi[7] = 7$ letters

Computing π

- Observation 1: if $P_1 \dots P_{\pi[i]}$ is a suffix of $P_1 \dots P_i$, then $P_1 \dots P_{\pi[i]-1}$ is a suffix of $P_1 \dots P_{i-1}$
 - Well, obviously...
- Observation 2: all the prefixes of P that are a suffix of P₁...P_i can be obtained by recursively applying π to i
 - e.g., $P_1 \dots P_{\pi[i]}$, $P_1 \dots, P_{\pi[\pi[i]]}$, $P_1 \dots, P_{\pi[\pi[\pi[i]]]}$ are all suffixes of $P_1 \dots P_i$

Computing π

- A non-obvious conclusion:
 - First, let's write $\pi^{(k)}[i]$ as $\pi[\cdot]$ applied k times to i
 - e.g., $\pi^{(2)}[i] = \pi[\pi[i]]$
 - $\pi[i]$ is equal to $\pi^{(k)}[i-1]+1,$ where k is the smallest integer that satisfies $P_{\pi^{(k)}[i-1]+1}=P_i$

• If there is no such $k, \ \pi[i] = 0$

► Intuition: we look at all the prefixes of P that are suffixes of P₁...P_{i-1}, and find the longest one whose next letter matches P_i

Implementation

```
pi[0] = -1;
int k = -1;
for(int i = 1; i <= m; i++) {
  while(k >= 0 && P[k+1] != P[i])
     k = pi[k];
  pi[i] = ++k;
}
```

Pattern Matching Implementation

```
int k = 0;
for(int i = 1; i <= n; i++) {
  while(k >= 0 && P[k+1] != T[i])
    k = pi[k];
  k++;
  if(k == m) {
    // P matches T[i-m+1..i]
    k = pi[k];
  }
}
```

Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

- Suffix trie of a string T is a rooted tree that stores all the suffixes (thus all the substrings)
- \blacktriangleright Each node corresponds to some substring of T
- Each edge is associated with an alphabet
- ► For each node that corresponds to ax, there is a special pointer called *suffix link* that leads to the node corresponding to x
- Surprisingly easy to implement!

Example

(Figure modified from Ukkonen's original paper)

Incremental Construction

- Given the suffix tree for $T_1 \dots T_n$
 - Then we append $T_{n+1} = a$ to T, creating necessary nodes
- Start at node u corresponding to $T_1 \dots T_n$
 - Create an a-transition to a new node v
- Take the suffix link at u to go to u', corresponding to $T_2 \dots T_n$
 - Create an $a\mbox{-transition}$ to a new node v'
 - Create a suffix link from v to v^\prime

Incremental Construction

- Repeat the previous process:
 - Take the suffix link at the current node
 - Make a new *a*-transition there
 - Create the suffix link from the previous node
- Stop if the node already has an *a*-transition
 - Because from this point, all nodes that are reachable via suffix links already have an *a*-transition

We want to add a new letter $\ensuremath{\mathsf{c}}$

- Construction time is linear in the tree size
- \blacktriangleright But the tree size can be quadratic in n

- e.g., T = aa...abb...b

► To find P, start at the root and keep following edges labeled with P₁, P₂, etc.

• Got stuck? Then P doesn't exist in T

Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Input string	Get all suffixes		S	ort the suffixes	Take the indices		
	1	BANANA	6	A			
	2	ANANA	4	ANA			
ת וא הזא הס	3	NANA	2	ANANA	6 4 2 1 5 2		
DANANA	4	ANA	1	BANANA	0,4,2,1,3,3		
	5	NA	5	NA			
	6	A	3	NANA			

- ▶ Memory usage is *O*(*n*)
- Has the same computational power as suffix trie
- Can be constructed in O(n) time (!)
 - But it's hard to implement
- There is an approachable $O(n \log^2 n)$ algorithm
 - If you want to see how it works, read the paper on the course website
 - http://cs97si.stanford.edu/suffix-array.pdf

Notes on String Problems

- Always be aware of the null-terminators
- Simple hash works so well in many problems
- If a problem involves rotations of some string, consider concatenating it with itself and see if it helps
- Stanford team notebook has implementations of suffix arrays and the KMP matcher