String Algorithms

Jaehyun Park

CS 97SI
Stanford University

June 30, 2015

Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

String Matching Problem

- Given a text T and a pattern P, find all occurrences of P within T
- Notations:
- n and m : lengths of P and T
- Σ : set of alphabets (of constant size)
- P_{i} : ith letter of P (1-indexed)
- a, b, c : single letters in Σ
- x, y, z : strings

Example

- $T=$ AGCATGCTGCAGTCATGCTTAGGCTA
- $P=\mathrm{GCT}$
- P appears three times in T
- A naive method takes $O(m n)$ time
- Initiate string comparison at every starting point
- Each comparison takes $O(m)$ time
- We can do much better!

Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Hash Table

Hash Function

- A function that takes a string and outputs a number
- A good hash function has few collisions
- i.e., If $x \neq y, H(x) \neq H(y)$ with high probability
- An easy and powerful hash function is a polynomial mod some prime p
- Consider each letter as a number (ASCII value is fine)
- $H\left(x_{1} \ldots x_{k}\right)=x_{1} a^{k-1}+x_{2} a^{k-2}+\cdots+x_{k-1} a+x_{k}(\bmod p)$
- How do we find $H\left(x_{2} \ldots x_{k+1}\right)$ from $H\left(x_{1} \ldots x_{k}\right)$?

Hash Table

- Main idea: preprocess T to speedup queries
- Hash every substring of length k
- k is a small constant
- For each query P, hash the first k letters of P to retrieve all the occurrences of it within T
- Don't forget to check collisions!

Hash Table

- Pros:
- Easy to implement
- Significant speedup in practice
- Cons:
- Doesn't help the asymptotic efficiency
- Can still take $\Theta(n m)$ time if hashing is terrible or data is difficult
- A lot of memory consumption

Outline

String Matching Problem
 \square

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Knuth-Morris-Pratt (KMP) Matcher

- A linear time (!) algorithm that solves the string matching problem by preprocessing P in $\Theta(m)$ time
- Main idea is to skip some comparisons by using the previous comparison result
- Uses an auxiliary array π that is defined as the following:
- $\pi[i]$ is the largest integer smaller than i such that $P_{1} \ldots P_{\pi[i]}$ is a suffix of $P_{1} \ldots P_{i}$
- ... It's better to see an example than the definition

π Table Example (from CLRS)

\boldsymbol{i}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	9	10
P_{i}	a	b	a	b	a	b	a	b	c	a
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

- $\pi[i]$ is the largest integer smaller than i such that $P_{1} \ldots P_{\pi[i]}$ is a suffix of $P_{1} \ldots P_{i}$
- e.g., $\pi[6]=4$ since abab is a suffix of ababab
- e.g., $\pi[9]=0$ since no prefix of length ≤ 8 ends with c
- Let's see why this is useful

Using the π Table

- $T=\mathrm{ABC}$ ABCDAB ABCDABCDABDE
- $P=\mathrm{ABCDABD}$
- $\pi=(0,0,0,0,1,2,0)$
- Start matching at the first position of T :

12345678901234567890123
 ABC ABCDAB ABCDABCDABDE ABCDABD

1234567

- Mismatch at the 4th letter of P !

Using the π Table

- We matched $k=3$ letters so far, and $\pi[k]=0$
- Thus, there is no point in starting the comparison at T_{2}, T_{3} (crucial observation)
- Shift P by $k-\pi[k]=3$ letters

12345678901234567890123
 ABC ABCDAB ABCDABCDABDE ABCDABD

1234567

- Mismatch at T_{4} again!

Using the π Table

- We matched $k=0$ letters so far
- Shift P by $k-\pi[k]=1$ letter (we define $\pi[0]=-1$)

12345678901234567890123
 ABC ABCDAB ABCDABCDABDE ABCDABD

1234567

- Mismatch at T_{11} !

Using the π Table

- $\pi[6]=2$ means $P_{1} P_{2}$ is a suffix of $P_{1} \ldots P_{6}$
- Shift P by $6-\pi[6]=4$ letters

12345678901234567890123
 ABC ABCDAB ABCDABCDABDE ABCDABD
 11 ABCDABD

1234567

- Again, no point in shifting P by 1,2 , or 3 letters

Using the π Table

- Mismatch at T_{11} again!

12345678901234567890123 ABC ABCDAB ABCDABCDABDE ABCDABD

1234567

- Currently 2 letters are matched
- Shift P by $2-\pi[2]=2$ letters

Using the π Table

- Mismatch at T_{11} yet again!

12345678901234567890123
 ABC ABCDAB ABCDABCDABDE ABCDABD

$$
1234567
$$

- Currently no letters are matched
- Shift P by $0-\pi[0]=1$ letter

Using the π Table

- Mismatch at T_{18}

12345678901234567890123
 ABC ABCDAB ABCDABCDABDE ABCDABD

1234567

- Currently 6 letters are matched
- Shift P by $6-\pi[6]=4$ letters

Using the π Table

- Finally, there it is!

12345678901234567890123
 ABC ABCDAB ABCDABCDABDE ABCDABD
 1234567

- Currently all 7 letters are matched
- After recording this match (at $T_{16} \ldots T_{22}$, we shift P again in order to find other matches
- Shift by $7-\pi[7]=7$ letters

Computing π

- Observation 1: if $P_{1} \ldots P_{\pi[i]}$ is a suffix of $P_{1} \ldots P_{i}$, then $P_{1} \ldots P_{\pi[i]-1}$ is a suffix of $P_{1} \ldots P_{i-1}$
- Well, obviously...
- Observation 2: all the prefixes of P that are a suffix of $P_{1} \ldots P_{i}$ can be obtained by recursively applying π to i
- e.g., $P_{1} \ldots P_{\pi[i]}, P_{1} \ldots, P_{\pi[\pi[i]]}, P_{1} \ldots, P_{\pi[\pi[\pi[i]]]}$ are all suffixes of $P_{1} \ldots P_{i}$

Computing π

- A non-obvious conclusion:
- First, let's write $\pi^{(k)}[i]$ as $\pi[\cdot]$ applied k times to i
- e.g., $\pi^{(2)}[i]=\pi[\pi[i]]$
- $\pi[i]$ is equal to $\pi^{(k)}[i-1]+1$, where k is the smallest integer that satisfies $P_{\pi^{(k)}[i-1]+1}=P_{i}$
- If there is no such $k, \pi[i]=0$
- Intuition: we look at all the prefixes of P that are suffixes of $P_{1} \ldots P_{i-1}$, and find the longest one whose next letter matches P_{i}

Implementation

$$
\begin{aligned}
& \text { pi }[0]=-1 ; \\
& \text { int } k=-1 ; \\
& \text { for (int } i=1 ; \text { i <= m; i++) \{ } \\
& \text { while }(k>=0 \text { \&\& P }[k+1] \text { ! }=P[i]) \\
& k=\operatorname{pi}[k] ; \\
& \text { pi }[i]=++k ;
\end{aligned}
$$

Pattern Matching Implementation

```
int k = 0;
for(int i = 1; i <= n; i++) {
    while(k >= 0 && P[k+1] != T[i])
        k = pi[k];
    k++;
    if(k == m) {
        // P matches T[i-m+1..i]
        k = pi[k];
    }
}
```


Outline

String Matching Problem
 Hash Table
 Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Suffix Trie

- Suffix trie of a string T is a rooted tree that stores all the suffixes (thus all the substrings)
- Each node corresponds to some substring of T
- Each edge is associated with an alphabet
- For each node that corresponds to $a x$, there is a special pointer called suffix link that leads to the node corresponding to x
- Surprisingly easy to implement!

Example

(Figure modified from Ukkonen's original paper)

Incremental Construction

- Given the suffix tree for $T_{1} \ldots T_{n}$
- Then we append $T_{n+1}=a$ to T, creating necessary nodes
- Start at node u corresponding to $T_{1} \ldots T_{n}$
- Create an a-transition to a new node v
- Take the suffix link at u to go to u^{\prime}, corresponding to $T_{2} \ldots T_{n}$
- Create an a-transition to a new node v^{\prime}
- Create a suffix link from v to v^{\prime}

Incremental Construction

- Repeat the previous process:
- Take the suffix link at the current node
- Make a new a-transition there
- Create the suffix link from the previous node
- Stop if the node already has an a-transition
- Because from this point, all nodes that are reachable via suffix links already have an a-transition

Construction Example

Given the suffix trie for aba We want to add a new letter c

Construction Example

1. Start at the green node u and make a c-transition

Construction Example

Construction Example

Construction Example

Construction Example

Construction Example

- Construction time is linear in the tree size
- But the tree size can be quadratic in n
- e.g., $T=\mathrm{aa} \ldots \mathrm{abb} \ldots \mathrm{b}$

Construction Example

- To find P, start at the root and keep following edges labeled with P_{1}, P_{2}, etc.
- Got stuck? Then P doesn't exist in T

Outline

String Matching Problem
Hash Table
Knuth-Morris-Pratt (KMP) Algorithm
Suffix Trie

Suffix Array

Suffix Array

Input string	Get all suffixes	Sort the suffixes	Take the indices
BANANA	1 BANANA	6 A	$6,4,2,1,5,3$
	2 ANANA	4 ANA	
	3 NANA	2 ANANA	
	4 ANA	1 BANANA	
	5 NA	5 NA	
	6 A	3 NANA	

Suffix Array

- Memory usage is $O(n)$
- Has the same computational power as suffix trie
- Can be constructed in $O(n)$ time (!)
- But it's hard to implement
- There is an approachable $O\left(n \log ^{2} n\right)$ algorithm
- If you want to see how it works, read the paper on the course website
- http://cs97si.stanford.edu/suffix-array.pdf

Notes on String Problems

- Always be aware of the null-terminators
- Simple hash works so well in many problems
- If a problem involves rotations of some string, consider concatenating it with itself and see if it helps
- Stanford team notebook has implementations of suffix arrays and the KMP matcher

