
String Algorithms

Jaehyun Park

CS 97SI
Stanford University

June 30, 2015



Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

String Matching Problem 2



String Matching Problem

◮ Given a text T and a pattern P , find all occurrences of P

within T

◮ Notations:

– n and m: lengths of P and T

– Σ: set of alphabets (of constant size)
– Pi: ith letter of P (1-indexed)
– a, b, c: single letters in Σ
– x, y, z: strings

String Matching Problem 3



Example

◮ T = AGCATGCTGCAGTCATGCTTAGGCTA

◮ P = GCT

◮ P appears three times in T

◮ A naive method takes O(mn) time

– Initiate string comparison at every starting point
– Each comparison takes O(m) time

◮ We can do much better!

String Matching Problem 4



Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Hash Table 5



Hash Function

◮ A function that takes a string and outputs a number

◮ A good hash function has few collisions

– i.e., If x 6= y, H(x) 6= H(y) with high probability

◮ An easy and powerful hash function is a polynomial mod some
prime p

– Consider each letter as a number (ASCII value is fine)
– H(x1 . . . xk) = x1ak−1 + x2ak−2 + · · · + xk−1a + xk (mod p)
– How do we find H(x2 . . . xk+1) from H(x1 . . . xk)?

Hash Table 6



Hash Table

◮ Main idea: preprocess T to speedup queries

– Hash every substring of length k

– k is a small constant

◮ For each query P , hash the first k letters of P to retrieve all
the occurrences of it within T

◮ Don’t forget to check collisions!

Hash Table 7



Hash Table

◮ Pros:

– Easy to implement
– Significant speedup in practice

◮ Cons:
– Doesn’t help the asymptotic efficiency

◮ Can still take Θ(nm) time if hashing is terrible or data is
difficult

– A lot of memory consumption

Hash Table 8



Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Knuth-Morris-Pratt (KMP) Algorithm 9



Knuth-Morris-Pratt (KMP) Matcher

◮ A linear time (!) algorithm that solves the string matching
problem by preprocessing P in Θ(m) time

– Main idea is to skip some comparisons by using the previous
comparison result

◮ Uses an auxiliary array π that is defined as the following:

– π[i] is the largest integer smaller than i such that P1 . . . Pπ[i] is
a suffix of P1 . . . Pi

◮ ... It’s better to see an example than the definition

Knuth-Morris-Pratt (KMP) Algorithm 10



π Table Example (from CLRS)

◮ π[i] is the largest integer smaller than i such that P1 . . . Pπ[i]
is a suffix of P1 . . . Pi

– e.g., π[6] = 4 since abab is a suffix of ababab

– e.g., π[9] = 0 since no prefix of length ≤ 8 ends with c

◮ Let’s see why this is useful

Knuth-Morris-Pratt (KMP) Algorithm 11



Using the π Table

◮ T = ABC ABCDAB ABCDABCDABDE

◮ P = ABCDABD

◮ π = (0, 0, 0, 0, 1, 2, 0)

◮ Start matching at the first position of T :

◮ Mismatch at the 4th letter of P !

Knuth-Morris-Pratt (KMP) Algorithm 12



Using the π Table

◮ We matched k = 3 letters so far, and π[k] = 0

– Thus, there is no point in starting the comparison at T2, T3

(crucial observation)

◮ Shift P by k − π[k] = 3 letters

◮ Mismatch at T4 again!

Knuth-Morris-Pratt (KMP) Algorithm 13



Using the π Table

◮ We matched k = 0 letters so far

◮ Shift P by k − π[k] = 1 letter (we define π[0] = −1)

◮ Mismatch at T11!

Knuth-Morris-Pratt (KMP) Algorithm 14



Using the π Table

◮ π[6] = 2 means P1P2 is a suffix of P1 . . . P6

◮ Shift P by 6 − π[6] = 4 letters

◮ Again, no point in shifting P by 1, 2, or 3 letters

Knuth-Morris-Pratt (KMP) Algorithm 15



Using the π Table

◮ Mismatch at T11 again!

◮ Currently 2 letters are matched

◮ Shift P by 2 − π[2] = 2 letters

Knuth-Morris-Pratt (KMP) Algorithm 16



Using the π Table

◮ Mismatch at T11 yet again!

◮ Currently no letters are matched

◮ Shift P by 0 − π[0] = 1 letter

Knuth-Morris-Pratt (KMP) Algorithm 17



Using the π Table

◮ Mismatch at T18

◮ Currently 6 letters are matched

◮ Shift P by 6 − π[6] = 4 letters

Knuth-Morris-Pratt (KMP) Algorithm 18



Using the π Table

◮ Finally, there it is!

◮ Currently all 7 letters are matched

◮ After recording this match (at T16 . . . T22, we shift P again in
order to find other matches

– Shift by 7 − π[7] = 7 letters

Knuth-Morris-Pratt (KMP) Algorithm 19



Computing π

◮ Observation 1: if P1 . . . Pπ[i] is a suffix of P1 . . . Pi, then
P1 . . . Pπ[i]−1 is a suffix of P1 . . . Pi−1

– Well, obviously...

◮ Observation 2: all the prefixes of P that are a suffix of
P1 . . . Pi can be obtained by recursively applying π to i

– e.g., P1 . . . Pπ[i], P1 . . . , Pπ[π[i]], P1 . . . , Pπ[π[π[i]]] are all
suffixes of P1 . . . Pi

Knuth-Morris-Pratt (KMP) Algorithm 20



Computing π

◮ A non-obvious conclusion:

– First, let’s write π(k)[i] as π[·] applied k times to i

– e.g., π(2)[i] = π[π[i]]
– π[i] is equal to π(k)[i − 1] + 1, where k is the smallest integer

that satisfies Pπ(k)[i−1]+1 = Pi

◮ If there is no such k, π[i] = 0

◮ Intuition: we look at all the prefixes of P that are suffixes of
P1 . . . Pi−1, and find the longest one whose next letter
matches Pi

Knuth-Morris-Pratt (KMP) Algorithm 21



Implementation

pi[0] = -1;

int k = -1;

for(int i = 1; i <= m; i++) {

while(k >= 0 && P[k+1] != P[i])

k = pi[k];

pi[i] = ++k;

}

Knuth-Morris-Pratt (KMP) Algorithm 22



Pattern Matching Implementation

int k = 0;

for(int i = 1; i <= n; i++) {

while(k >= 0 && P[k+1] != T[i])

k = pi[k];

k++;

if(k == m) {

// P matches T[i-m+1..i]

k = pi[k];

}

}

Knuth-Morris-Pratt (KMP) Algorithm 23



Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Suffix Trie 24



Suffix Trie

◮ Suffix trie of a string T is a rooted tree that stores all the
suffixes (thus all the substrings)

◮ Each node corresponds to some substring of T

◮ Each edge is associated with an alphabet

◮ For each node that corresponds to ax, there is a special
pointer called suffix link that leads to the node corresponding
to x

◮ Surprisingly easy to implement!

Suffix Trie 25



Example

(Figure modified from Ukkonen’s original paper)

Suffix Trie 26



Incremental Construction

◮ Given the suffix tree for T1 . . . Tn

– Then we append Tn+1 = a to T , creating necessary nodes

◮ Start at node u corresponding to T1 . . . Tn

– Create an a-transition to a new node v

◮ Take the suffix link at u to go to u′, corresponding to
T2 . . . Tn

– Create an a-transition to a new node v′

– Create a suffix link from v to v′

Suffix Trie 27



Incremental Construction

◮ Repeat the previous process:

– Take the suffix link at the current node
– Make a new a-transition there
– Create the suffix link from the previous node

◮ Stop if the node already has an a-transition

– Because from this point, all nodes that are reachable via suffix
links already have an a-transition

Suffix Trie 28



Construction Example

Given the suffix trie for aba

We want to add a new letter c

Suffix Trie 29



Construction Example

Suffix Trie 30



Construction Example

Suffix Trie 31



Construction Example

Suffix Trie 32



Construction Example

Suffix Trie 33



Construction Example

Suffix Trie 34



Construction Example

◮ Construction time is linear in the tree size

◮ But the tree size can be quadratic in n

– e.g., T = aa . . . abb . . . b

Suffix Trie 35



Construction Example

◮ To find P , start at the root and keep following edges labeled
with P1, P2, etc.

◮ Got stuck? Then P doesn’t exist in T

Suffix Trie 36



Outline

String Matching Problem

Hash Table

Knuth-Morris-Pratt (KMP) Algorithm

Suffix Trie

Suffix Array

Suffix Array 37



Suffix Array

Suffix Array 38



Suffix Array

◮ Memory usage is O(n)

◮ Has the same computational power as suffix trie

◮ Can be constructed in O(n) time (!)

– But it’s hard to implement

◮ There is an approachable O(n log2 n) algorithm

– If you want to see how it works, read the paper on the course
website

– http://cs97si.stanford.edu/suffix-array.pdf

Suffix Array 39

http://cs97si.stanford.edu/suffix-array.pdf


Notes on String Problems

◮ Always be aware of the null-terminators

◮ Simple hash works so well in many problems

◮ If a problem involves rotations of some string, consider
concatenating it with itself and see if it helps

◮ Stanford team notebook has implementations of suffix arrays
and the KMP matcher

Suffix Array 40


	String Matching Problem
	Hash Table
	Knuth-Morris-Pratt (KMP) Algorithm
	Suffix Trie
	Suffix Array

