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Graphs

v

An abstract way of representing connectivity using nodes (also
called vertices) and edges

We will label the nodes from 1 to n

v

v

m edges connect some pairs of nodes
— Edges can be either one-directional (directed) or bidirectional

v

Nodes and edges can have some auxiliary information

Figure from Wikipedia
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Why Study Graphs?

» Lots of problems formulated and solved in terms of graphs

— Shortest path problems

— Network flow problems

— Matching problems

— 2-SAT problem

— Graph coloring problem

— Traveling Salesman Problem (TSP): still unsolved!
— and many more...

Graphs
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Storing Graphs

> Need to store both the set of nodes V' and the set of edges

— Nodes can be stored in an array
— Edges must be stored in some other way

» Want to support operations such as:

— Retrieving all edges incident to a particular node
— Testing if given two nodes are directly connected

> Use either adjacency matrix or adjacency list to store the
edges

Adjacency Matrix and Adjacency List



Adjacency Matrix

» An easy way to store connectivity information

— Checking if two nodes are directly connected: O(1) time
» Make an n x n matrix A

— a4; = 1 if there is an edge from 7 to j

— ai; = 0 otherwise
» Uses ©(n?) memory

— Only use when n is less than a few thousands,
— and when the graph is dense

Adjacency Matrix and Adjacency List



Adjacency List

» Each node has a list of outgoing edges from it
— Easy to iterate over edges incident to a certain node
— The lists have variable lengths
— Space usage: O(n +m)

Adjacency Matrix and Adjacency List



Implementing Adjacency List

» Solution 1. Using linked lists

— Too much memory/time overhead
— Using dynamic allocated memory or pointers is bad

» Solution 2. Using an array of vectors

— Easier to code, no bad memory issues
— But very slow

» Solution 3. Using arrays (!)

— Assuming the total number of edges is known
— Very fast and memory-efficient

Adjacency Matrix and Adjacency List



Implementation Using Arrays

ID To Next Edge ID
1 2 -
2 3 -
3 3 1
4 5 3
5 3 -
6 2 -
7 2 5
8 5
From
Last Edge ID | 4 [ 7

Adjacency Matrix and Adjacency List
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Implementation Using Arrays

» Have two arrays E of size m and LE of size n

— E contains the edges

— LE contains the starting pointers of the edge lists
> Initialize LE[1] = -1 for all 1

— LE[i] = 0 is also fine if the arrays are l-indexed
> Inserting a new edge from u to v with ID k

Elk].to = v

E[k] .nextID = LE[u]

LE[u] =k

Adjacency Matrix and Adjacency List
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Implementation Using Arrays

> lterating over all edges starting at u:
for(ID = LE[ul]l; ID != -1; ID = E[ID].nextID)
// E[ID] is an edge starting from u

» Once built, it's hard to modify the edges

— The graph better be static!
— But adding more edges is easy

Adjacency Matrix and Adjacency List 12



Special Graphs

Special Graphs
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Tree

» A connected acyclic graph
» Most important type of special graphs

— Many problems are easier to solve on trees
» Alternate equivalent definitions:

— A connected graph with n — 1 edges

— An acyclic graph with n — 1 edges

— There is exactly one path between every pair of nodes

— An acyclic graph but adding any edge results in a cycle
A connected graph but removing any edge disconnects it

Special Graphs 14



Other Special Graphs

» Directed Acyclic Graph (DAG): the name says what it is
— Equivalent to a partial ordering of nodes

> Bipartite Graph: Nodes can be separated into two groups S
and T such that edges exist between S and T" only (no edges
within S or within T)

Special Graphs 15
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Graph Traversal

» The most basic graph algorithm that visits nodes of a graph
in certain order

> Used as a subroutine in many other algorithms

» We will cover two algorithms

— Depth-First Search (DFS): uses recursion (stack)
— Breadth-First Search (BFS): uses queue

Depth-First and Breadth-First Search
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Depth-First Search

DFS(v): visits all the nodes reachable from v in depth-first order

» Mark v as visited
» For each edge v — u:
— If w is not visited, call DFS(u)

» Use non-recursive version if recursion depth is too big (over a
few thousands)
— Replace recursive calls with a stack

Depth-First and Breadth-First Search
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Breadth-First Search

BFS(v): visits all the nodes reachable from v in breadth-first order
> Initialize a queue @
» Mark v as visited and push it to
> While @) is not empty:

— Take the front element of @ and call it w
— For each edge w — u:

> If u is not visited, mark it as visited and push it to Q

Depth-First and Breadth-First Search 19



Topological Sort

Topological Sort
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Topological Sort

> Input: a DAG G = (V,E)
» Qutput: an ordering of nodes such that for each edge u — v,
u comes before v

» There can be many answers
- e.g, both {6,1,3,2,7,4,5,8} and {1,6,2,3,4,5,7,8} are
valid orderings for the graph below

Topological Sort 21



Topological Sort

v

Any node without an incoming edge can be the first element

v

After deciding the first node, remove outgoing edges from it

v

Repeat!

v

Time complexity: O(n? 4 m)
— Too slow...

Topological Sort
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Topological Sort (faster version)

v

Precompute the number of incoming edges deg(v) for each
node v

v

Put all nodes v with deg(v) = 0 into a queue @
Repeat until Q becomes empty:

— Take v from Q
— For each edge v — w:

v

> Decrement deg(u) (essentially removing the edge v — )
> If deg(u) =0, push u to Q

v

Time complexity: O(n + m)

Topological Sort
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Eulerian Circuit

Eulerian Circuit
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Eulerian Circuit

» Given an undirected graph G

» Want to find a sequence of nodes that visits every edge
exactly once and comes back to the starting point

» Eulerian circuits exist if and only if

— @ is connected
— and each node has an even degree

Eulerian Circuit 25



Constructive Proof of Existence

» Pick any node in G and walk randomly without using the
same edge more than once
» Each node is of even degree, so when you enter a node, there
will be an unused edge you exit through
— Except at the starting point, at which you can get stuck
» When you get stuck, what you have is a cycle
— Remove the cycle and repeat the process in each connected

component
— Glue the cycles together to finish!

Eulerian Circuit 26



Related Problems

» Eulerian path: exists if and only if the graph is connected and
the number of nodes with odd degree is 0 or 2.

» Hamiltonian path/cycle: a path/cycle that visits every node in
the graph exactly once. Looks similar but very hard (still
unsolved)!

Eulerian Circuit 27
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Minimum Spanning Tree (MST)

» Given an undirected weighted graph G = (V, E)

» Want to find a subset of ¥ with the minimum total weight
that connects all the nodes into a tree

» We will cover two algorithms:

— Kruskal's algorithm
— Prim’s algorithm

Minimum Spanning Tree (MST) 29



Kruskal’s Algorithm

» Main idea: the edge e* with the smallest weight has to be in
the MST
» Simple proof:
— Assume not. Take the MST T that doesn't contain e*.

— Add e* to T, which results in a cycle.
Remove the edge with the highest weight from the cycle.

> The removed edge cannot be e* since it has the smallest
weight.
— Now we have a better spanning tree than T’
Contradiction!

Minimum Spanning Tree (MST)
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Kruskal’s Algorithm

» Another main idea: after an edge is chosen, the two nodes at
the ends can be merged and considered as a single node
(supernode)

» Pseudocode:

— Sort the edges in increasing order of weight
— Repeat until there is one supernode left:

> Take the minimum weight edge ¢*
> If e* connects two different supernodes, then connect them
and merge the supernodes (use union-find)

— Otherwise, ignore e¢* and try the next edge

Minimum Spanning Tree (MST) 31



Prim’s Algorithm

» Main idea:
— Maintain a set S that starts out with a single node s
— Find the smallest weighted edge e* = (u,v) that connects

ueSandvé¢s
— Add e* to the MST, add v to S
— Repeat until S =V

» Differs from Kruskal's in that we grow a single supernode S
instead of growing multiple ones at the same time

Minimum Spanning Tree (MST)
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Prim’s Algorithm Pseudocode

» Initialize S := {s}, D, := cost(s,v) for every v
— If there is no edge between s and v, cost(s,v) = oo
» Repeat until S =V:
— Find v ¢ S with smallest D,
> Use a priority queue or a simple linear search
— Add v to S, add D, to the total weight of the MST
— For each edge (v, w):
» Update D,, := min(Dy,, cost(v, w))
» Can be modified to compute the actual MST along with the
total weight

Minimum Spanning Tree (MST)
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Kruskal’s vs Prim’s

> Kruskal's Algorithm
— Takes O(mlogm) time
— Pretty easy to code
— Generally slower than Prim’s
> Prim’s Algorithm
— Time complexity depends on the implementation:
» Can be O(n® +m), O(mlogn), or O(m + nlogn)
— A bit trickier to code
— Generally faster than Kruskal's

Minimum Spanning Tree (MST)
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Strongly Connected Components (SCC)

v

Given a directed graph G = (V, E)
A graph is strongly connected if all nodes are reachable from
every single node in V'

v

v

Strongly connected components of G are maximal strongly
connected subgraphs of G

The graph below has 3 SCCs: {a,b, e}, {c,d, h}, {f, g}

v

Figure from Wikipedia

Strongly Connected Components (SCC)
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Kosaraju’s Algorithm

v

Initialize counter ¢ := 0
While not all nodes are labeled:

— Choose an arbitrary unlabeled node v
— Start DFS from v
» Check the current node x as visited
» Recurse on all unvisited neighbors
> After the DFS calls are finished, increment ¢ and set the label
of x as ¢

v

v

Reverse the direction of all the edges

v

For node v with label n,n —1,...,1:
— Find all reachable nodes from v and group them as an SCC

Strongly Connected Components (SCC) 37



Kosaraju’s Algorithm

» We won't prove why this works
» Two graph traversals are performed
— Running time: ©(n + m)

» Other SCC algorithms exist but this one is particularly easy to
code

— and asymptotically optimal

Strongly Connected Components (SCC)
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