Basic Graph Algorithms

Jaehyun Park

CS 97sl
Stanford University

June 29, 2015

Outline

Graphs

Graphs

Graphs

v

An abstract way of representing connectivity using nodes (also
called vertices) and edges

We will label the nodes from 1 to n

v

v

m edges connect some pairs of nodes
— Edges can be either one-directional (directed) or bidirectional

v

Nodes and edges can have some auxiliary information

Figure from Wikipedia

Graphs

Why Study Graphs?

» Lots of problems formulated and solved in terms of graphs

— Shortest path problems

— Network flow problems

— Matching problems

— 2-SAT problem

— Graph coloring problem

— Traveling Salesman Problem (TSP): still unsolved!
— and many more...

Graphs

Outline

Adjacency Matrix and Adjacency List

Adjacency Matrix and Adjacency List

Storing Graphs

> Need to store both the set of nodes V' and the set of edges

— Nodes can be stored in an array
— Edges must be stored in some other way

» Want to support operations such as:

— Retrieving all edges incident to a particular node
— Testing if given two nodes are directly connected

> Use either adjacency matrix or adjacency list to store the
edges

Adjacency Matrix and Adjacency List

Adjacency Matrix

» An easy way to store connectivity information

— Checking if two nodes are directly connected: O(1) time
» Make an n x n matrix A

— a4; = 1 if there is an edge from 7 to j

— ai; = 0 otherwise
» Uses ©(n?) memory

— Only use when n is less than a few thousands,
— and when the graph is dense

Adjacency Matrix and Adjacency List

Adjacency List

» Each node has a list of outgoing edges from it
— Easy to iterate over edges incident to a certain node
— The lists have variable lengths
— Space usage: O(n +m)

Adjacency Matrix and Adjacency List

Implementing Adjacency List

» Solution 1. Using linked lists

— Too much memory/time overhead
— Using dynamic allocated memory or pointers is bad

» Solution 2. Using an array of vectors

— Easier to code, no bad memory issues
— But very slow

» Solution 3. Using arrays (!)

— Assuming the total number of edges is known
— Very fast and memory-efficient

Adjacency Matrix and Adjacency List

Implementation Using Arrays

ID To Next Edge ID
1 2 -
2 3 -
3 3 1
4 5 3
5 3 -
6 2 -
7 2 5
8 5
From
Last Edge ID | 4 [7

Adjacency Matrix and Adjacency List

10

Implementation Using Arrays

» Have two arrays E of size m and LE of size n

— E contains the edges

— LE contains the starting pointers of the edge lists
> Initialize LE[1] = -1 for all 1

— LE[i] = 0 is also fine if the arrays are l-indexed
> Inserting a new edge from u to v with ID k

Elk].to = v

E[k] .nextID = LE[u]

LE[u] =k

Adjacency Matrix and Adjacency List

11

Implementation Using Arrays

> lterating over all edges starting at u:
for(ID = LE[ul]l; ID != -1; ID = E[ID].nextID)
// E[ID] is an edge starting from u

» Once built, it's hard to modify the edges

— The graph better be static!
— But adding more edges is easy

Adjacency Matrix and Adjacency List 12

Special Graphs

Special Graphs

Outline

13

Tree

» A connected acyclic graph
» Most important type of special graphs

— Many problems are easier to solve on trees
» Alternate equivalent definitions:

— A connected graph with n — 1 edges

— An acyclic graph with n — 1 edges

— There is exactly one path between every pair of nodes

— An acyclic graph but adding any edge results in a cycle
A connected graph but removing any edge disconnects it

Special Graphs 14

Other Special Graphs

» Directed Acyclic Graph (DAG): the name says what it is
— Equivalent to a partial ordering of nodes

> Bipartite Graph: Nodes can be separated into two groups S
and T such that edges exist between S and T" only (no edges
within S or within T)

Special Graphs 15

Outline

Depth-First and Breadth-First Search

Depth-First and Breadth-First Search

16

Graph Traversal

» The most basic graph algorithm that visits nodes of a graph
in certain order

> Used as a subroutine in many other algorithms

» We will cover two algorithms

— Depth-First Search (DFS): uses recursion (stack)
— Breadth-First Search (BFS): uses queue

Depth-First and Breadth-First Search

17

Depth-First Search

DFS(v): visits all the nodes reachable from v in depth-first order

» Mark v as visited
» For each edge v — u:
— If w is not visited, call DFS(u)

» Use non-recursive version if recursion depth is too big (over a
few thousands)
— Replace recursive calls with a stack

Depth-First and Breadth-First Search

18

Breadth-First Search

BFS(v): visits all the nodes reachable from v in breadth-first order
> Initialize a queue @
» Mark v as visited and push it to
> While @) is not empty:

— Take the front element of @ and call it w
— For each edge w — u:

> If u is not visited, mark it as visited and push it to Q

Depth-First and Breadth-First Search 19

Topological Sort

Topological Sort

Outline

20

Topological Sort

> Input: a DAG G = (V,E)
» Qutput: an ordering of nodes such that for each edge u — v,
u comes before v

» There can be many answers
- e.g, both {6,1,3,2,7,4,5,8} and {1,6,2,3,4,5,7,8} are
valid orderings for the graph below

Topological Sort 21

Topological Sort

v

Any node without an incoming edge can be the first element

v

After deciding the first node, remove outgoing edges from it

v

Repeat!

v

Time complexity: O(n? 4 m)
— Too slow...

Topological Sort

22

Topological Sort (faster version)

v

Precompute the number of incoming edges deg(v) for each
node v

v

Put all nodes v with deg(v) = 0 into a queue @
Repeat until Q becomes empty:

— Take v from Q
— For each edge v — w:

v

> Decrement deg(u) (essentially removing the edge v —)
> If deg(u) =0, push u to Q

v

Time complexity: O(n + m)

Topological Sort

23

Eulerian Circuit

Eulerian Circuit

Outline

24

Eulerian Circuit

» Given an undirected graph G

» Want to find a sequence of nodes that visits every edge
exactly once and comes back to the starting point

» Eulerian circuits exist if and only if

— @ is connected
— and each node has an even degree

Eulerian Circuit 25

Constructive Proof of Existence

» Pick any node in G and walk randomly without using the
same edge more than once
» Each node is of even degree, so when you enter a node, there
will be an unused edge you exit through
— Except at the starting point, at which you can get stuck
» When you get stuck, what you have is a cycle
— Remove the cycle and repeat the process in each connected

component
— Glue the cycles together to finish!

Eulerian Circuit 26

Related Problems

» Eulerian path: exists if and only if the graph is connected and
the number of nodes with odd degree is 0 or 2.

» Hamiltonian path/cycle: a path/cycle that visits every node in
the graph exactly once. Looks similar but very hard (still
unsolved)!

Eulerian Circuit 27

Outline

Minimum Spanning Tree (MST)

Minimum Spanning Tree (MST)

28

Minimum Spanning Tree (MST)

» Given an undirected weighted graph G = (V, E)

» Want to find a subset of ¥ with the minimum total weight
that connects all the nodes into a tree

» We will cover two algorithms:

— Kruskal's algorithm
— Prim’s algorithm

Minimum Spanning Tree (MST) 29

Kruskal’s Algorithm

» Main idea: the edge e* with the smallest weight has to be in
the MST
» Simple proof:
— Assume not. Take the MST T that doesn't contain e*.

— Add e* to T, which results in a cycle.
Remove the edge with the highest weight from the cycle.

> The removed edge cannot be e* since it has the smallest
weight.
— Now we have a better spanning tree than T’
Contradiction!

Minimum Spanning Tree (MST)

30

Kruskal’s Algorithm

» Another main idea: after an edge is chosen, the two nodes at
the ends can be merged and considered as a single node
(supernode)

» Pseudocode:

— Sort the edges in increasing order of weight
— Repeat until there is one supernode left:

> Take the minimum weight edge ¢*
> If e* connects two different supernodes, then connect them
and merge the supernodes (use union-find)

— Otherwise, ignore e¢* and try the next edge

Minimum Spanning Tree (MST) 31

Prim’s Algorithm

» Main idea:
— Maintain a set S that starts out with a single node s
— Find the smallest weighted edge e* = (u,v) that connects

ueSandvé¢s
— Add e* to the MST, add v to S
— Repeat until S =V

» Differs from Kruskal's in that we grow a single supernode S
instead of growing multiple ones at the same time

Minimum Spanning Tree (MST)

32

Prim’s Algorithm Pseudocode

» Initialize S := {s}, D, := cost(s,v) for every v
— If there is no edge between s and v, cost(s,v) = oo
» Repeat until S =V:
— Find v ¢ S with smallest D,
> Use a priority queue or a simple linear search
— Add v to S, add D, to the total weight of the MST
— For each edge (v, w):
» Update D,, := min(Dy,, cost(v, w))
» Can be modified to compute the actual MST along with the
total weight

Minimum Spanning Tree (MST)

33

Kruskal’s vs Prim’s

> Kruskal's Algorithm
— Takes O(mlogm) time
— Pretty easy to code
— Generally slower than Prim’s
> Prim’s Algorithm
— Time complexity depends on the implementation:
» Can be O(n® +m), O(mlogn), or O(m + nlogn)
— A bit trickier to code
— Generally faster than Kruskal's

Minimum Spanning Tree (MST)

34

Outline

Strongly Connected Components (SCC)

Strongly Connected Components (SCC)

35

Strongly Connected Components (SCC)

v

Given a directed graph G = (V, E)
A graph is strongly connected if all nodes are reachable from
every single node in V'

v

v

Strongly connected components of G are maximal strongly
connected subgraphs of G

The graph below has 3 SCCs: {a,b, e}, {c,d, h}, {f, g}

v

Figure from Wikipedia

Strongly Connected Components (SCC)

36

Kosaraju’s Algorithm

v

Initialize counter ¢ := 0
While not all nodes are labeled:

— Choose an arbitrary unlabeled node v
— Start DFS from v
» Check the current node x as visited
» Recurse on all unvisited neighbors
> After the DFS calls are finished, increment ¢ and set the label
of x as ¢

v

v

Reverse the direction of all the edges

v

For node v with label n,n —1,...,1:
— Find all reachable nodes from v and group them as an SCC

Strongly Connected Components (SCC) 37

Kosaraju’s Algorithm

» We won't prove why this works
» Two graph traversals are performed
— Running time: ©(n + m)

» Other SCC algorithms exist but this one is particularly easy to
code

— and asymptotically optimal

Strongly Connected Components (SCC)

38

	Graphs
	Adjacency Matrix and Adjacency List
	Special Graphs
	Depth-First and Breadth-First Search
	Topological Sort
	Eulerian Circuit
	Minimum Spanning Tree (MST)
	Strongly Connected Components (SCC)

