Basic Graph Algorithms

Jaehyun Park

CS 97SI Stanford University

June 29, 2015

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Graphs

Graphs

- An abstract way of representing connectivity using nodes (also called vertices) and edges
- lacktriangle We will label the nodes from 1 to n
- lacktriangleright m edges connect some pairs of nodes
 - Edges can be either one-directional (directed) or bidirectional
- Nodes and edges can have some auxiliary information

Figure from Wikipedia

Why Study Graphs?

- Lots of problems formulated and solved in terms of graphs
 - Shortest path problems
 - Network flow problems
 - Matching problems
 - 2-SAT problem
 - Graph coloring problem
 - Traveling Salesman Problem (TSP): still unsolved!
 - and many more...

Graphs

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Storing Graphs

- lacktriangle Need to store both the set of nodes V and the set of edges E
 - Nodes can be stored in an array
 - Edges must be stored in some other way
- Want to support operations such as:
 - Retrieving all edges incident to a particular node
 - Testing if given two nodes are directly connected
- Use either adjacency matrix or adjacency list to store the edges

Adjacency Matrix

- An easy way to store connectivity information
 - Checking if two nodes are directly connected: O(1) time
- ightharpoonup Make an $n \times n$ matrix A
 - $a_{ij} = 1$ if there is an edge from i to j
 - $a_{ij} = 0$ otherwise
- ▶ Uses $\Theta(n^2)$ memory
 - Only use when n is less than a few thousands,
 - and when the graph is dense

Adjacency List

- Each node has a list of outgoing edges from it
 - Easy to iterate over edges incident to a certain node
 - The lists have variable lengths
 - Space usage: $\Theta(n+m)$

From		То	
1	2	3	5
2	3	5	
3	2		
4	2	5	
5			

Implementing Adjacency List

- ▶ Solution 1. Using linked lists
 - Too much memory/time overhead
 - Using dynamic allocated memory or pointers is bad
- Solution 2. Using an array of vectors
 - Easier to code, no bad memory issues
 - But very slow
- Solution 3. Using arrays (!)
 - Assuming the total number of edges is known
 - Very fast and memory-efficient

Implementation Using Arrays

ID	То	Next Edge ID	
1	2	-	
2	3	-	
3	3	1	
4	5	3	
5	3	-	
6	2	-	
7	2	5	
8	5	2	

From	1	2	3	4	5
Last Edge ID	4	8	6	7	-

Implementation Using Arrays

- lacktriangle Have two arrays E of size m and LE of size n
 - E contains the edges
 - LE contains the starting pointers of the edge lists
- ▶ Initialize LE[i] = -1 for all i
 - LE[i] = 0 is also fine if the arrays are 1-indexed
- ▶ Inserting a new edge from u to v with ID k

```
E[k].to = v
E[k].nextID = LE[u]
LE[u] = k
```

Implementation Using Arrays

Iterating over all edges starting at u:

```
for(ID = LE[u]; ID != -1; ID = E[ID].nextID)
  // E[ID] is an edge starting from u
```

- ► Once built, it's hard to modify the edges
 - The graph better be static!
 - But adding more edges is easy

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Special Graphs 13

Tree

- A connected acyclic graph
- Most important type of special graphs
 - Many problems are easier to solve on trees
- Alternate equivalent definitions:
 - A connected graph with n-1 edges
 - An acyclic graph with n-1 edges
 - There is exactly one path between every pair of nodes
 - An acyclic graph but adding any edge results in a cycle
 - A connected graph but removing any edge disconnects it

Special Graphs 14

Other Special Graphs

- ▶ Directed Acyclic Graph (DAG): the name says what it is
 - Equivalent to a partial ordering of nodes

▶ Bipartite Graph: Nodes can be separated into two groups S and T such that edges exist between S and T only (no edges within S or within T)

Special Graphs 15

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Graph Traversal

- ► The most basic graph algorithm that visits nodes of a graph in certain order
- Used as a subroutine in many other algorithms

- We will cover two algorithms
 - Depth-First Search (DFS): uses recursion (stack)
 - Breadth-First Search (BFS): uses queue

Depth-First Search

DFS(v): visits all the nodes reachable from v in depth-first order

- Mark v as visited
- ▶ For each edge $v \rightarrow u$:
 - If u is not visited, call DFS(u)

- Use non-recursive version if recursion depth is too big (over a few thousands)
 - Replace recursive calls with a stack

Breadth-First Search

BFS(v): visits all the nodes reachable from v in breadth-first order

- ▶ Initialize a queue Q
- lacktriangle Mark v as visited and push it to Q
- While Q is not empty:
 - Take the front element of ${\it Q}$ and call it ${\it w}$
 - For each edge $w \to u$:
 - lacksquare If u is not visited, mark it as visited and push it to Q

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Topological Sort

- ▶ Input: a DAG G = (V, E)
- ▶ Output: an ordering of nodes such that for each edge $u \rightarrow v$, u comes before v
- There can be many answers
 - e.g., both $\{6,1,3,2,7,4,5,8\}$ and $\{1,6,2,3,4,5,7,8\}$ are valid orderings for the graph below

Topological Sort 21

Topological Sort

- Any node without an incoming edge can be the first element
- ▶ After deciding the first node, remove outgoing edges from it
- Repeat!

- ▶ Time complexity: $O(n^2 + m)$
 - Too slow...

Topological Sort (faster version)

- $lackbox{ Precompute the number of incoming edges } \deg(v)$ for each node v
- ▶ Put all nodes v with deg(v) = 0 into a queue Q
- Repeat until Q becomes empty:
 - Take v from Q
 - For each edge $v \to u$:
 - ▶ Decrement deg(u) (essentially removing the edge $v \to u$)
 - If deg(u) = 0, push u to Q
- ▶ Time complexity: $\Theta(n+m)$

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Eulerian Circuit

- ightharpoonup Given an undirected graph G
- Want to find a sequence of nodes that visits every edge exactly once and comes back to the starting point

- Eulerian circuits exist if and only if
 - G is connected
 - and each node has an even degree

Constructive Proof of Existence

- lacktriangle Pick any node in G and walk randomly without using the same edge more than once
- ► Each node is of even degree, so when you enter a node, there will be an unused edge you exit through
 - Except at the starting point, at which you can get stuck
- When you get stuck, what you have is a cycle
 - Remove the cycle and repeat the process in each connected component
 - Glue the cycles together to finish!

Related Problems

▶ Eulerian path: exists if and only if the graph is connected and the number of nodes with odd degree is 0 or 2.

Hamiltonian path/cycle: a path/cycle that visits every node in the graph exactly once. Looks similar but very hard (still unsolved)!

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Minimum Spanning Tree (MST)

- Given an undirected weighted graph G = (V, E)
- ▶ Want to find a subset of *E* with the minimum total weight that connects all the nodes into a tree

- ▶ We will cover two algorithms:
 - Kruskal's algorithm
 - Prim's algorithm

Kruskal's Algorithm

- Main idea: the edge e^* with the smallest weight has to be in the MST
- ► Simple proof:
 - Assume not. Take the MST T that doesn't contain e^{\star} .
 - Add e^{\star} to T, which results in a cycle.
 - Remove the edge with the highest weight from the cycle.
 - ► The removed edge cannot be e^{*} since it has the smallest weight.
 - Now we have a better spanning tree than T
 - Contradiction!

Kruskal's Algorithm

- Another main idea: after an edge is chosen, the two nodes at the ends can be merged and considered as a single node (supernode)
- Pseudocode:
 - Sort the edges in increasing order of weight
 - Repeat until there is one supernode left:
 - ▶ Take the minimum weight edge e^*
 - ▶ If e^* connects two different supernodes, then connect them and merge the supernodes (use union-find)
 - Otherwise, ignore e^\star and try the next edge

Prim's Algorithm

- Main idea:
 - Maintain a set S that starts out with a single node s
 - Find the smallest weighted edge $e^\star = (u,v)$ that connects $u \in S$ and $v \notin S$
 - Add e^{\star} to the MST, add v to S
 - Repeat until S = V

Differs from Kruskal's in that we grow a single supernode S instead of growing multiple ones at the same time

Prim's Algorithm Pseudocode

- ▶ Initialize $S := \{s\}$, $D_v := cost(s, v)$ for every v
 - If there is no edge between s and v, $cost(s, v) = \infty$
- ightharpoonup Repeat until S=V:
 - Find $v \notin S$ with smallest D_v
 - Use a priority queue or a simple linear search
 - Add v to S, add D_v to the total weight of the MST
 - For each edge (v, w):
 - Update $D_w := \min(D_w, \cot(v, w))$
- Can be modified to compute the actual MST along with the total weight

Kruskal's vs Prim's

- Kruskal's Algorithm
 - Takes $O(m \log m)$ time
 - Pretty easy to code
 - Generally slower than Prim's
- Prim's Algorithm
 - Time complexity depends on the implementation:
 - ► Can be $O(n^2 + m)$, $O(m \log n)$, or $O(m + n \log n)$
 - A bit trickier to code
 - Generally faster than Kruskal's

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Strongly Connected Components (SCC)

- Given a *directed* graph G = (V, E)
- ▶ A graph is *strongly connected* if all nodes are reachable from every single node in *V*
- ▶ Strongly connected components of *G* are maximal strongly connected subgraphs of *G*
- ▶ The graph below has 3 SCCs: $\{a,b,e\}$, $\{c,d,h\}$, $\{f,g\}$

Figure from Wikipedia

Kosaraju's Algorithm

- ▶ Initialize counter c := 0
- ▶ While not all nodes are labeled:
 - Choose an arbitrary unlabeled node v
 - Start DFS from v
 - Check the current node x as visited
 - Recurse on all unvisited neighbors
 - $\,\blacktriangleright\,$ After the DFS calls are finished, increment c and set the label of x as c
- Reverse the direction of all the edges
- For node v with label $n, n-1, \ldots, 1$:
 - $\,$ Find all reachable nodes from v and group them as an SCC $\,$

Kosaraju's Algorithm

- We won't prove why this works
- ► Two graph traversals are performed
 - Running time: $\Theta(n+m)$

- Other SCC algorithms exist but this one is particularly easy to code
 - and asymptotically optimal