
Basic Graph Algorithms

Jaehyun Park

CS 97SI
Stanford University

June 29, 2015



Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Graphs 2



Graphs

◮ An abstract way of representing connectivity using nodes (also
called vertices) and edges

◮ We will label the nodes from 1 to n
◮ m edges connect some pairs of nodes

– Edges can be either one-directional (directed) or bidirectional

◮ Nodes and edges can have some auxiliary information

Graphs 3



Why Study Graphs?

◮ Lots of problems formulated and solved in terms of graphs

– Shortest path problems
– Network flow problems
– Matching problems
– 2-SAT problem
– Graph coloring problem
– Traveling Salesman Problem (TSP): still unsolved!

– and many more...

Graphs 4



Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Adjacency Matrix and Adjacency List 5



Storing Graphs

◮ Need to store both the set of nodes V and the set of edges E

– Nodes can be stored in an array
– Edges must be stored in some other way

◮ Want to support operations such as:

– Retrieving all edges incident to a particular node
– Testing if given two nodes are directly connected

◮ Use either adjacency matrix or adjacency list to store the
edges

Adjacency Matrix and Adjacency List 6



Adjacency Matrix

◮ An easy way to store connectivity information

– Checking if two nodes are directly connected: O(1) time

◮ Make an n × n matrix A

– aij = 1 if there is an edge from i to j
– aij = 0 otherwise

◮ Uses Θ(n2) memory

– Only use when n is less than a few thousands,
– and when the graph is dense

Adjacency Matrix and Adjacency List 7



Adjacency List

◮ Each node has a list of outgoing edges from it

– Easy to iterate over edges incident to a certain node
– The lists have variable lengths
– Space usage: Θ(n + m)

Adjacency Matrix and Adjacency List 8



Implementing Adjacency List

◮ Solution 1. Using linked lists

– Too much memory/time overhead
– Using dynamic allocated memory or pointers is bad

◮ Solution 2. Using an array of vectors

– Easier to code, no bad memory issues
– But very slow

◮ Solution 3. Using arrays (!)

– Assuming the total number of edges is known
– Very fast and memory-efficient

Adjacency Matrix and Adjacency List 9



Implementation Using Arrays

Adjacency Matrix and Adjacency List 10



Implementation Using Arrays

◮ Have two arrays E of size m and LE of size n

– E contains the edges
– LE contains the starting pointers of the edge lists

◮ Initialize LE[i] = -1 for all i

– LE[i] = 0 is also fine if the arrays are 1-indexed

◮ Inserting a new edge from u to v with ID k

E[k].to = v

E[k].nextID = LE[u]

LE[u] = k

Adjacency Matrix and Adjacency List 11



Implementation Using Arrays

◮ Iterating over all edges starting at u:

for(ID = LE[u]; ID != -1; ID = E[ID].nextID)

// E[ID] is an edge starting from u

◮ Once built, it’s hard to modify the edges

– The graph better be static!
– But adding more edges is easy

Adjacency Matrix and Adjacency List 12



Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Special Graphs 13



Tree

◮ A connected acyclic graph

◮ Most important type of special graphs

– Many problems are easier to solve on trees

◮ Alternate equivalent definitions:

– A connected graph with n − 1 edges
– An acyclic graph with n − 1 edges
– There is exactly one path between every pair of nodes
– An acyclic graph but adding any edge results in a cycle
– A connected graph but removing any edge disconnects it

Special Graphs 14



Other Special Graphs

◮ Directed Acyclic Graph (DAG): the name says what it is

– Equivalent to a partial ordering of nodes

◮ Bipartite Graph: Nodes can be separated into two groups S
and T such that edges exist between S and T only (no edges
within S or within T )

Special Graphs 15



Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Depth-First and Breadth-First Search 16



Graph Traversal

◮ The most basic graph algorithm that visits nodes of a graph
in certain order

◮ Used as a subroutine in many other algorithms

◮ We will cover two algorithms

– Depth-First Search (DFS): uses recursion (stack)
– Breadth-First Search (BFS): uses queue

Depth-First and Breadth-First Search 17



Depth-First Search

DFS(v): visits all the nodes reachable from v in depth-first order

◮ Mark v as visited

◮ For each edge v → u:

– If u is not visited, call DFS(u)

◮ Use non-recursive version if recursion depth is too big (over a
few thousands)

– Replace recursive calls with a stack

Depth-First and Breadth-First Search 18



Breadth-First Search

BFS(v): visits all the nodes reachable from v in breadth-first order

◮ Initialize a queue Q

◮ Mark v as visited and push it to Q

◮ While Q is not empty:

– Take the front element of Q and call it w
– For each edge w → u:

◮ If u is not visited, mark it as visited and push it to Q

Depth-First and Breadth-First Search 19



Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Topological Sort 20



Topological Sort

◮ Input: a DAG G = (V, E)

◮ Output: an ordering of nodes such that for each edge u → v,
u comes before v

◮ There can be many answers

– e.g., both {6, 1, 3, 2, 7, 4, 5, 8} and {1, 6, 2, 3, 4, 5, 7, 8} are
valid orderings for the graph below

Topological Sort 21



Topological Sort

◮ Any node without an incoming edge can be the first element

◮ After deciding the first node, remove outgoing edges from it

◮ Repeat!

◮ Time complexity: O(n2 + m)

– Too slow...

Topological Sort 22



Topological Sort (faster version)

◮ Precompute the number of incoming edges deg(v) for each
node v

◮ Put all nodes v with deg(v) = 0 into a queue Q

◮ Repeat until Q becomes empty:

– Take v from Q
– For each edge v → u:

◮ Decrement deg(u) (essentially removing the edge v → u)
◮ If deg(u) = 0, push u to Q

◮ Time complexity: Θ(n + m)

Topological Sort 23



Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Eulerian Circuit 24



Eulerian Circuit

◮ Given an undirected graph G

◮ Want to find a sequence of nodes that visits every edge
exactly once and comes back to the starting point

◮ Eulerian circuits exist if and only if

– G is connected
– and each node has an even degree

Eulerian Circuit 25



Constructive Proof of Existence

◮ Pick any node in G and walk randomly without using the
same edge more than once

◮ Each node is of even degree, so when you enter a node, there
will be an unused edge you exit through

– Except at the starting point, at which you can get stuck

◮ When you get stuck, what you have is a cycle

– Remove the cycle and repeat the process in each connected
component

– Glue the cycles together to finish!

Eulerian Circuit 26



Related Problems

◮ Eulerian path: exists if and only if the graph is connected and
the number of nodes with odd degree is 0 or 2.

◮ Hamiltonian path/cycle: a path/cycle that visits every node in
the graph exactly once. Looks similar but very hard (still
unsolved)!

Eulerian Circuit 27



Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Minimum Spanning Tree (MST) 28



Minimum Spanning Tree (MST)

◮ Given an undirected weighted graph G = (V, E)

◮ Want to find a subset of E with the minimum total weight
that connects all the nodes into a tree

◮ We will cover two algorithms:

– Kruskal’s algorithm
– Prim’s algorithm

Minimum Spanning Tree (MST) 29



Kruskal’s Algorithm

◮ Main idea: the edge e⋆ with the smallest weight has to be in
the MST

◮ Simple proof:

– Assume not. Take the MST T that doesn’t contain e⋆.
– Add e⋆ to T , which results in a cycle.
– Remove the edge with the highest weight from the cycle.

◮ The removed edge cannot be e⋆ since it has the smallest
weight.

– Now we have a better spanning tree than T
– Contradiction!

Minimum Spanning Tree (MST) 30



Kruskal’s Algorithm

◮ Another main idea: after an edge is chosen, the two nodes at
the ends can be merged and considered as a single node
(supernode)

◮ Pseudocode:

– Sort the edges in increasing order of weight
– Repeat until there is one supernode left:

◮ Take the minimum weight edge e⋆

◮ If e⋆ connects two different supernodes, then connect them
and merge the supernodes (use union-find)

– Otherwise, ignore e⋆ and try the next edge

Minimum Spanning Tree (MST) 31



Prim’s Algorithm

◮ Main idea:

– Maintain a set S that starts out with a single node s
– Find the smallest weighted edge e⋆ = (u, v) that connects

u ∈ S and v /∈ S
– Add e⋆ to the MST, add v to S
– Repeat until S = V

◮ Differs from Kruskal’s in that we grow a single supernode S
instead of growing multiple ones at the same time

Minimum Spanning Tree (MST) 32



Prim’s Algorithm Pseudocode

◮ Initialize S := {s}, Dv := cost(s, v) for every v

– If there is no edge between s and v, cost(s, v) = ∞

◮ Repeat until S = V :
– Find v /∈ S with smallest Dv

◮ Use a priority queue or a simple linear search

– Add v to S, add Dv to the total weight of the MST
– For each edge (v, w):

◮ Update Dw := min(Dw, cost(v, w))

◮ Can be modified to compute the actual MST along with the
total weight

Minimum Spanning Tree (MST) 33



Kruskal’s vs Prim’s

◮ Kruskal’s Algorithm

– Takes O(m log m) time
– Pretty easy to code
– Generally slower than Prim’s

◮ Prim’s Algorithm
– Time complexity depends on the implementation:

◮ Can be O(n2 + m), O(m log n), or O(m + n log n)

– A bit trickier to code
– Generally faster than Kruskal’s

Minimum Spanning Tree (MST) 34



Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Strongly Connected Components (SCC) 35



Strongly Connected Components (SCC)

◮ Given a directed graph G = (V, E)

◮ A graph is strongly connected if all nodes are reachable from
every single node in V

◮ Strongly connected components of G are maximal strongly
connected subgraphs of G

◮ The graph below has 3 SCCs: {a, b, e}, {c, d, h}, {f, g}

Strongly Connected Components (SCC) 36



Kosaraju’s Algorithm

◮ Initialize counter c := 0

◮ While not all nodes are labeled:

– Choose an arbitrary unlabeled node v
– Start DFS from v

◮ Check the current node x as visited
◮ Recurse on all unvisited neighbors
◮ After the DFS calls are finished, increment c and set the label

of x as c

◮ Reverse the direction of all the edges

◮ For node v with label n, n − 1, . . . , 1:

– Find all reachable nodes from v and group them as an SCC

Strongly Connected Components (SCC) 37



Kosaraju’s Algorithm

◮ We won’t prove why this works

◮ Two graph traversals are performed

– Running time: Θ(n + m)

◮ Other SCC algorithms exist but this one is particularly easy to
code

– and asymptotically optimal

Strongly Connected Components (SCC) 38


	Graphs
	Adjacency Matrix and Adjacency List
	Special Graphs
	Depth-First and Breadth-First Search
	Topological Sort
	Eulerian Circuit
	Minimum Spanning Tree (MST)
	Strongly Connected Components (SCC)

