Introduction

Jaehyun Park

CS 97SI Stanford University

June 29, 2015

Welcome to CS 97SI

- Introduction
- Programming Contests
- How to Practice
- Problem Solving Examples
- Grading Policy

Coaches

- Officially: Jerry Cain
- Actually: Jaehyun Park

Why Do Programming Contests?

- You can learn:
 - Many useful algorithms, mathematical insights
 - How to code/debug quickly and accurately
 - How to work in a team
- Then you can rock in classes, job interviews, etc.
- It's also fun!

Prerequisites

- CS 106 level programming experience
 - You'll be coding in either $\mathsf{C}/\mathsf{C}++$ or Java
- Good mathematical insight
- Most importantly, eagerness to learn

Topics

- 1. Introduction
- 2. Mathematics
- 3. Data structures
- 4. Dynamic programming (DP)
- 5. Combinatorial games
- 6. Graph algorithms
- 7. Shortest distance problems
- 8. Network flow
- 9. Geometric algorithms
- 10. String algorithms

Programming Contests

- Stanford Local Programming Contest
- ACM-ICPC
 - Pacific Northwest Regional
 - World Finals
- Online Contests
 - TopCoder, Codeforces
 - Google Code Jam
- And many more...

How to Practice

- USACO Training Program
- Online Judges
- Weekly Practice Contests

USACO Training Program

- http://ace.delos.com/usacogate
- Detailed explanation on basic algorithms, problem solving strategies
- Good problems
- Automated judge system

Online Judges

- Websites with automated judges
 - Real contest problems
 - Immediate feedback
- A few good OJs:
 - Codeforces
 - TopCoder
 - Peking OJ
 - Sphere OJ
 - UVa OJ

Weekly Practice Contests

- Every Saturday 11am-4pm at Gates B08
 Free food!
- Open to anyone interested
- Real contest problems from many sources
- Subscribe to the stanford-acm-icpc email list to get announcements

Example

- 1. Read the problem statement
 - Check the input/output specification!
- 2. Make the problem abstract
- 3. Design an algorithm
 - Often the hardest step
- 4. Implement and debug
- 5. Submit
- 6. AC!
 - $-\,$ If not, go back to 4 $\,$

Problem Solving Example

- ▶ POJ 1000: A+B Problem
 - Input: Two space-separated integers a, b
 - Constraints: $0 \le a, b \le 10$
 - Output: a + b

POJ 1000 Code in C/C++

```
#include<stdio.h>
int main()
{
    int a, b;
    scanf("%d%d", &a, &b);
    printf("%d\n", a + b);
    return 0;
}
```

Another Example

▶ POJ 1004: Financial Management

- Input: 12 floating point numbers on separate lines
- Output: Average of the given numbers
- Just a few more bytes than POJ 1000...

POJ 1004 Code in C/C++

```
#include<stdio.h>
int main()
ł
    double sum = 0, buf;
    for(int i = 0; i < 12; i++) {
        scanf("%lf", &buf);
        sum += buf;
    }
    printf("$%.2lf\n", sum / 12.0);
    return 0;
}
```

Something to think about

- What if the given numbers are HUGE?
- Not all the input constraints are explicit
 - Hidden constraints are generally "reasonable"
- ► Always think about the worst case scenario, edge cases, etc.

Grading Policy

- You can either:
 - Solve a given number of POJ problems on the course webpage
 - OR, participate in 5 or more weekly practice contests
- If you have little experience, solving POJ problems is recommended
 - Of course, doing both of them is better

Stanford ACM Team Notebook

- http://stanford.edu/~liszt90/acm/notebook.html
- Implementations of many algorithms we'll learn
- Policy on notebook usage:
 - Don't copy-paste anything from the notebook!
 - At least type everything yourself
 - Let me know of any error or suggestion

Links

- Course website: http://cs97si.stanford.edu
- Stanford ACM Team Notebook: http://stanford.edu/~liszt90/acm/notebook.html
- Peking Online Judge: http://poj.org
- USACO Training Gate: http://ace.delos.com/usacogate
- > Online discussion board: http://piazza.com/class#winter2012/cs97si/