
Shortest Path Algorithms

Jaehyun Park

CS 97SI
Stanford University

June 29, 2015



Shortest Path Problem

◮ Input: a weighted graph G = (V, E)

– The edges can be directed or not
– Sometimes, we allow negative edge weights
– Note: use BFS for unweighted graphs

◮ Output: the path between two given nodes u and v that
minimizes the total weight (or cost, length)

– Sometimes, we want to compute all-pair shortest paths
– Sometimes, we want to compute shortest paths from u to all

other nodes

2



Outline

Floyd-Warshall Algorithm

Dijkstra’s Algorithm

Bellman-Ford Algorithm

Floyd-Warshall Algorithm 3



Floyd-Warshall Algorithm

◮ Given a directed weighted graph G

◮ Outputs a matrix D where dij is the shortest distance from
node i to j

◮ Can detect a negative-weight cycle

◮ Runs in Θ(n3) time

◮ Extremely easy to code

– Coding time less than a few minutes

Floyd-Warshall Algorithm 4



Floyd-Warshall Pseudocode

◮ Initialize D as the given cost matrix

◮ For k = 1, . . . , n:
– For all i and j:

◮ dij := min(dij , dik + dkj)

◮ If dij + dji < 0 for some i and j, then the graph has a
negative weight cycle

◮ Done!

– But how does this work?

Floyd-Warshall Algorithm 5



How Does Floyd-Warshall Work?

◮ Define f(i, j, k) as the shortest distance from i to j, using
nodes 1, . . . , k as intermediate nodes

– f(i, j, n) is the shortest distance from i to j
– f(i, j, 0) = cost(i, j)

◮ The optimal path for f(i, j, k) may or may not have k as an
intermediate node

– If it does, f(i, j, k) = f(i, k, k − 1) + f(k, j, k − 1)
– Otherwise, f(i, j, k) = f(i, j, k − 1)

◮ Therefore, f(i, j, k) is the minimum of the two quantities
above

Floyd-Warshall Algorithm 6



How Does Floyd-Warshall Work?

◮ We have the following recurrences and base cases

– f(i, j, 0) = cost(i, j)
– f(i, j, k) = min(f(i, k, k − 1) + f(k, j, k − 1), f(i, j, k − 1))

◮ From the values of f(·, ·, k − 1), we can calculate f(·, ·, k)

– It turns out that we don’t need a separate matrix for each k;
overwriting the existing values is fine

◮ That’s how we get Floyd-Warshall algorithm

Floyd-Warshall Algorithm 7



Outline

Floyd-Warshall Algorithm

Dijkstra’s Algorithm

Bellman-Ford Algorithm

Dijkstra’s Algorithm 8



Dijkstra’s Algorithm

◮ Given a directed weighted graph G and a source s

– Important: The edge weights have to be nonnegative!

◮ Outputs a vector d where di is the shortest distance from s to
node i

◮ Time complexity depends on the implementation:

– Can be O(n2 + m), O(m log n), or O(m + n log n)

◮ Very similar to Prim’s algorithm

◮ Intuition: Find the closest node to s, and then the second
closest one, then the third, etc.

Dijkstra’s Algorithm 9



Dijkstra’s Algorithm

◮ Maintain a set of nodes S, the shortest distances to which are
decided

◮ Also maintain a vector d, the shortest distance estimate from s

◮ Initially, S := {s}, and dv := cost(s, v)

◮ Repeat until S = V :

– Find v /∈ S with the smallest dv, and add it to S
– For each edge v → u of cost c:

◮ du := min(du, dv + c)

Dijkstra’s Algorithm 10



Outline

Floyd-Warshall Algorithm

Dijkstra’s Algorithm

Bellman-Ford Algorithm

Bellman-Ford Algorithm 11



Bellman-Ford Algorithm

◮ Given a directed weighted graph G and a source s

◮ Outputs a vector d where di is the shortest distance from s to
node i

◮ Can detect a negative-weight cycle

◮ Runs in Θ(nm) time

◮ Extremely easy to code

– Coding time less than a few minutes

Bellman-Ford Algorithm 12



Bellman-Ford Pseudocode

◮ Initialize ds := 0 and dv := ∞ for all v 6= s

◮ For k = 1, . . . , n − 1:
– For each edge u → v of cost c:

◮ dv := min(dv, du + c)

◮ For each edge u → v of cost c:
– If dv > du + c:

◮ Then the graph contains a negative-weight cycle

Bellman-Ford Algorithm 13



Why Does Bellman-Ford Work?

◮ A shortest path can have at most n − 1 edges

◮ At the kth iteration, all shortest paths using k or less edges
are computed

◮ After n − 1 iterations, all distances must be final; for every
edge u → v of cost c, dv ≤ du + c holds

– Unless there is a negative-weight cycle
– This is how the negative-weight cycle detection works

Bellman-Ford Algorithm 14



System of Difference Constraints

◮ Given m inequalities of the form xi − xj ≤ c

◮ Want to find real numbers x1, . . . , xn that satisfy all the given
inequalities

◮ Seemingly this has nothing to do with shortest paths

– But it can be solved using Bellman-Ford

Bellman-Ford Algorithm 15



Graph Construction

◮ Create node i for every variable xi

◮ Make an imaginary source node s

◮ Create zero-cost edges from s to all other nodes

◮ Rewrite the given inequalities as xi ≤ xj + c

– For each of these constraint, make an edge from j to i with
cost c

◮ Now we run Bellman-Ford using s as the source

Bellman-Ford Algorithm 16



What Happens?

◮ For every edge j → i with cost c, the shortest distance
dvector will satisfy di ≤ dj + c

– Setting xi = di gives a solution!

◮ What if there is a negative-weight cycle?

– Assume that 1 → 2 → · · · → 1 is a negative-weight cycle
– From our construction, the given constraints contain

x2 ≤ x1 + c1, x3 ≤ x2 + c2, etc.
– Adding all of them gives 0 ≤ (something negative)
– i.e., the given constraints were impossible to satisfy

Bellman-Ford Algorithm 17



System of Difference Constraints

◮ It turns out that our solution minimizes the span of the
variables: max xi − min xi

◮ We won’t prove it

◮ This is a big hint on POJ 3169!

Bellman-Ford Algorithm 18


	Floyd-Warshall Algorithm
	Dijkstra's Algorithm
	Bellman-Ford Algorithm

